Phone

9140565719

Email

mindfulyogawithmeenu@gmail.com

Opening Hours

Mon - Fri: 7AM - 7PM

वैदिकसमाधानगुरुकुलम

उच्च प्रतिभा के धनी और गणित के विद्वानों के लिए ही यह पोस्ट भारत की गौरवशाली अतीत का🚩

गणित के विभिन्न क्षेत्रों में भारत का योगदान
प्राचीनकाल तथा मध्यकाल के भारतीय गणितज्ञों द्वारा गणित के क्षेत्र में किये गये कुछ प्रमुख योगदान नीचे दिये गये हैं-
आंकगणित : दाशमिक प्रणाली (Decimal system), ऋण संख्याएँ (Negative numbers) (ब्रह्मगुप्त देखें), शून्य (हिन्दू अंक प्रणाली देखें), द्विक संख्या प्रणाली (Binary numeral system), स्थानीय मान पर आधारित संख्या आधुनिक संख्या निरूपण, फ्लोटिंग पॉइंट संख्याएँ (केरलीय गणित सम्प्रदाय देखें), संख्या सिद्धान्त , अनन्त (Infinity) (यजुर्वेद देखें), टांसफाइनाइट संख्याएँ (Transfinite numbers), अपरिमेय संख्याएँ (शुल्बसूत्र देखें)

भूमिति अर्थात भूमि मापन का शास्त्र : वर्गमूल (see Bakhshali approximation), Cube roots (see Mahavira), Pythagorean triples (see Sulba Sutras; Baudhayana and Apastamba state the Pythagorean theorem without proof), Transformation (see Panini), Pascal’s triangle (see Pingala)
बीजगणित: Quadratic equations (see Sulba Sutras, Aryabhata, and Brahmagupta), Cubic equations and Quartic equations (biquadratic equations) (see Mahavira and Bhāskara II)

गणितीय तर्कशास्त्र (लॉजिक): Formal grammars, formal language theory, the Panini-Backus form (see Panini), Recursion (see Panini)

सामान्य गणित: Fibonacci numbers (see Pingala), Earliest forms of Morse code (see Pingala), Logarithms, indices (see Jaina mathematics), Algorithms, Algorism (see Aryabhata and Brahmagupta)

त्रिकोणमिति: Trigonometric functions (see Surya Siddhanta and Aryabhata), Trigonometric series (see Madhava and Kerala school)

भारतीय गणित का इतिहास

सभी प्राचीन सभ्यताओं में गणित विद्या की पहली अभिव्यक्ति गणना प्रणाली के रूप में प्रगट होती है। अति प्रारंभिक समाजों में संख्यायें रेखाओं के समूह द्वारा प्रदर्शित की जातीं थीं। यद्यपि बाद में, विभिन्न संख्याओं को विशिष्ट संख्यात्मक नामों और चिह्नों द्वारा प्रदर्शित किया जाने लगा, उदाहरण स्वरूप भारत में ऐसा किया गया। रोम जैसे स्थानों में उन्हें वर्णमाला के अक्षरों द्वारा प्रदर्शित किया गया। यद्यपि आज हम अपनी दशमलव प्रणाली के अभ्यस्त हो चुके हैं, किंतु सभी प्राचीन सभ्यताओं में संख्याएं दशमाधार प्रणाली पर आधारित नहीं थीं। प्राचीन बेबीलोन में 60 पर आधारित प्रणाली का प्रचलन था।
भारत में गणित के इतिहास को मुख्यता ५ कालखंडों में बांटा गया है.. १. आदि काल (500 इस्वी पूर्व तक) इसे भी मुख्य दो काल खंड में विभाजित किया गया है. अ)वैदिक काल (१००० इस्वी पूर्व तक )- शुन्य और दशमलव की खोज ब)उत्तर वैदिक काल (१००० से ५०० इस्वी पूर्व तक )इस युग में गणित का भारत में अधिक विकास हुआ | इसी युग में बोधायन शुल्व सूत्र की खोज हुई जिसे हम आज पाइथागोरस प्रमेय के रूप मे जानते है| २. पूर्व मध्य काल – sine, cosine की खोज हुई| ३. मध्य काल – ये भारतीय गणित का स्वर्ण काल है | अर्याभट्ट, श्रीधराचार्य ,महावीराचार्य आदि श्रेष्ट गणितज्ञ हुए| ४. उत्तर-मध्य काल (१२०० इस्वी से १८०० इस्वी तक ) -नीलकंठ ने १५०० में sin r का मान निकालने का सूत्र दिया जिसे हम ग्रेगरी श्रेणी के नाम से जानते है | ५. वर्तमान काल -रामानुजम आदि महान गणितज्ञ है..|
हड़प्पा में दशमलव प्रणाली
भारत में दशमलव प्रणाली हरप्पाकाल में अस्तित्व में थी जैसा कि हरप्पा के बाटों और मापों के विश्लेषण से पता चलता है। उस काल के 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 और 500 के अनुपात वाले बाट पहचान में आये हैं। दशमलव विभाजन वाले पैमाने भी मिले हैं। हरप्पा के बाट और माप की एक खास बात जिस पर ध्यान आकर्षित होता है, वह है उनकी शुद्धता। एक कांसे की छड़ जिस पर 0.367 इंच की इकाइयों में घाट बने हुए हैं, उस समय की बारीकी की मात्र की मांग की ओर इशारा करता है। ऐसे शुद्ध माप वाले पैमाने नगर आयोजन नियमों के अनुपालन सुनिश्चित करने के लिए खास तौर पर महत्वपूर्ण थे क्योंकि एक दूसरे को समकोण पर काटती हुई निश्चित चैड़ाई की सड़कें तथा शुद्ध माप की निकास बनाने हेतु और विशेष निर्देशों के अनुसार भवन निर्माण के लिए उनका विशेष महत्व था। शुद्ध माप वाले बाटों की श्रृखंलाबद्ध प्रणाली का अस्तित्व हरप्पा के समाज में व्यापार वाणिज्य में हुए विकास की ओर इशारा करता है।
वैदिक काल में गणितीय गतिविधियां

वैदिक काल में गणितीय गतिविधियों के अभिलेख वेदों में अधिकतर धार्मिक कर्मकांडों के साथ मिलते हैं। फिर भी, अन्य कई कृषि आधारित प्राचीन सभ्यताओं की तरह यहां भी अंकगणित और ज्यामिति का अध्ययन धर्मनिरपेक्ष क्रियाकलापों से भी प्रेरित था। इस प्रकार कुछ हद तक भारत में प्राचीन गणितीय उन्नतियां वैसे ही विकसित हुईं जैसे मिस्त्र, बेबीलोन और चीन में। भू-वितरण प्रणाली और कृषि कर के आकलन हेतु कृषि क्षेत्र को शुद्ध माप की आवश्यकता थी। जब जमीन का पुनर्वितरण होता था, उनकी चकबंदी होती थी तो भू पैमाइश की समस्या आती ही थी जिसका समाधान जरूरी था और यह सुनिश्चित करने के लिए कि सिंचित और असिंचित जमीन और उर्वरा शक्ति की भिन्नता को ध्यान में रखकर सभी खेतिहरों में जमीन का समतुल्य वितरण हो सके, हर गांव के किसान की मिल्कियत को कई दर्जों में विभाजित किया जाता था ताकि जमीन का आबंटन न्यायपूर्ण हो सके। सारे चक एक ही आकार के हों, यह संभव नहीं था। अतः स्थानीय प्रशासकों को आयातकार या त्रिभुजाकार क्षेत्रों को समतुल्य परिमाण के वर्गाकार क्षेत्रों में परिणत करना पड़ता था या इसी प्रकार के और काम करने पड़ते थे। कर निर्धारण मौसमी या वार्षिक फसल की आय के निश्चित अनुपात पर आधारित था। मगर कई अन्य दशाओं को ध्यान में रखकर उन्हें कम या अधिक किया जा सकता था। इसका अर्थ था कि लगान वसूलने वाले प्रशासकों के लिए ज्यामिति और अंकगणित का ज्ञान जरूरी था। इस प्रकार गणित धर्म निरपेक्ष गतिविधि और कर्मकांड दोनों क्षेत्रों की सेवाओं में उपयोगी था।

अंकगणितीय क्रियायें जैसे योग, घटाना, गुणन, भाग, वर्ग, घन और मूल नारद विष्णु पुराण में वर्णित हैं। इसके प्रणेता वेद व्यास माने जाते हैं जो 1000 ई. पू. हुए थे। ज्यामिति /रेखा गणित/ विद्या के उदाहरण 800 ई. पू. में बौधायन के शुल्व सूत्र में और 600 ई. पू. के आपस्तम्ब सूत्र में मिलते हैं जो वैदिककाल में प्रयुक्त कर्मकाण्डीय बलि वेदी के निर्माण की तकनीक का वर्णन करते हैं। हो सकता है कि इन ग्रंथों ने पूर्वकाल में, संभवतया हरप्पाकाल में अर्जित ज्यामितीय ज्ञान का उपयोग किया हो। बौधायन सूत्र बुनियादी ज्यामितीय आकारों के बारे तथा एक ज्यामितीय आकार दूसरे समक्षेत्रीय आकार में या उसके अंश या उसके गुणित में परिणत करने की जानकारी प्रदर्शित करता है उदाहरण के लिए एक आयत को एक समक्षेत्रीय वर्ग के रूप में अथवा उसके अंश या गुणित में परिणत करने का तरीका। इन सूत्रों में से कुछ तो निकटतम मान तक ले जाते हैं और कुछ एकदम शुद्ध मान बतलाते हैं तथा कुछ हद तक व्यवहारिक सूक्ष्मता और बुनियादी ज्यामितीय सिद्धांतों की समझ प्रगट करते हैं। गुणन और योग के आधुनिक तरीके संभवतः शुल्व सू़त्र वर्णित गुरों से ही उद्भूत हुए थे।

यूनानी गणितज्ञ और दार्शनिक पायथागोरस जो 6 वीं सदी ई. पू. में हुआ था उपनिषदों से परिचित था और उसने अपनी बुनियादी ज्यामिति शुल्व सूत्रों से ही सीखी थी। पायथागोरस के प्रमेय के नाम से प्रसिद्ध प्रमेय का पूर्ण विवरण बौधायन सू़त्र में इस प्रकार मिलता हैः किसी वर्ग के विकर्ण पर बने हुए वर्ग का क्षेत्रफल उस वर्ग के क्षेत्रफल का दुगुना होता है। आयतों से संबंधित ऐसा ही एक परीक्षण भी उल्लेखनीय है। उसके सूत्र में एक अज्ञात राशि वाले एक रेखीय समीकरण का भी ज्यामितीय हल मिलता है। उसमें द्विघात समीकरण के उदाहरण भी हैं। आपस्तम्ब सूत्र जिसमें बौधायन सूत्र के विस्तार के साथ कई मौलिक योगदान भी हैं 2 का वर्गमूल बतलाता है जो दशमलव के बाद पांचवें स्थान तक शुद्ध है। आपस्तम्ब में वृत्त को एक वर्ग में घेरने, किसी रेखा खंड को सात बराबर भाग में बांटने और सामान्य रेखिक समीकरण का हल निकालने जैसे प्रश्नों पर भी विचार किया गया है। छटवीं सदी ई. पू. के जैन ग्रंथों जैसे सूर्य प्रज्ञाप्ति में दीर्घ वृत्त का विवरण दिया गया है।

ये परिणाम कैसे निकाले गए इस विषय पर आधुनिक विद्वानों में मतभेद हैं। कुछ का विश्वास है कि ये परिणाम अटकल विधि अथवा रूल आॅफ थंब अथवा कई उदाहरणों से प्राप्त नतीजों के साधारणीकरण से निकाले गए हैं। दूसरा मत यह है कि एकबार वैज्ञानिक विधि न्यायसूत्रों से निश्चित हो गई – ऐसे नतीजों के प्रमाण अवश्य दिए गए होंगे, मगर ये प्रमाण खो गए या नष्ट हो गए अथवा गुरुकुल प्रणाली के जरिये मौखिक रूप से उनका प्रसार हो गया और केवल अंतिम परिणाम ही ग्रंथों में सारिणीबद्ध हो गये। हर हाल में यह तो निश्चित है कि वैदिक काल में गणित के अध्ययन को काफी महत्व दिया जाता था। 1000 ई. पू. में रचित वेदांग ज्योतिष में लिखा है – जैसे मयूर पंख और नागमणि शरीर में शिखर स्थान या भाल पर शोभित होती है उसी प्रकार वेदों और शास्त्रों की सभी शाखाओं में गणित का स्थान शीर्ष पर है। कई शताब्दियों बाद मैसूर के जैन गणितज्ञ महावीराचार्य ने गणित के महत्व पर और जोर देते हुए कहाः इस चलाचल जगत में जो भी वस्तु विद्यमान है वह बिना गणित के आधार के नहीं समझी जा सकती।
पाणिनि और विधि सम्मत वैज्ञानिक संकेत चिन्ह

भारतीय विज्ञान के इतिहास में एक विशेष प्रगति, जिसका गंभीर प्रभाव सभी परवर्ती गणितीय ग्रंथों पर पड़ना था, संस्कृत व्याकरण और भाषा विज्ञान के प्रणेता पाणिनि द्वारा किया गया काम था। ध्वनिशास्त्र और संरचना विज्ञान पर एक विशद और वैज्ञानिक सिद्धांत पूरी व्याख्या के साथ प्रस्तुत करते हुए पाणिनि ने अपने संस्कृत व्याकरण के ग्रंथ अष्टाध्यायी में विधि सम्मत शब्द उत्पादन के नियम और परिभाषाएं प्रस्तुत कीं। बुनियादी तत्वों जैसे स्वर, व्यंजन, शब्दों के भेद जैसे संज्ञा और सर्वनाम आदि को वर्गीकृत किया गया। संयुक्त शब्दों और वाक्यों के विन्यास की श्रेणीबद्ध नियमों के जरिये उसी प्रकार व्याख्या की गई जैसे विधि सम्मत भाषा सिद्धांत में की जाती है।

आज पाणिनि के विन्यासों को किसी गणितीय क्रिया की आधुनिक परिभाषाओं की तुलना में भी देखा जा सकता है। जी. जी. जोसेफ ’’दी क्रेस्ट आॅफ दा पीकाॅक’’ में विवेचना करते हैं कि भारतीय गणित की बीजगणितीय प्रकृति संस्कृत भाषा की संरचना की परिणति है। इंगरमेन ने अपने शोध प्रबंध में ’’पाणिनि – बैकस फार्म’’ में पाणिनि के संकेत चिन्हों को उतना ही प्रबल बतलाया है जितना कि बैकस के संकेत चिह्न। बैकस नार्मल फार्म आधुनिक कम्प्युटर भाषाओं के वाक्यविन्यास का वर्णन करने के लिए व्यवहृत होता है जिसका अविष्कारकत्र्ता बैकस है। इस प्रकार पाणिनि के कार्यों ने वैज्ञानिक संकेत चिन्हों के प्रादर्श का एक उदाहरण प्रस्तुत किया जिसने बीजगणितीय समीकरणों को वर्णित करने और बीजगणितीय प्रमेयों और उनके फलों को एक वैज्ञानिक खाके में प्रस्तुत करने के लिए अमूर्त संकेत चिह्न प्रयोग में लाने के लिए प्रेरित किया होगा।
दर्शनशास्त्र और गणित

दार्शनिक सिद्धांतों का गणितीय परिकल्पनाओं और सूत्रीय पदों के विकास पर गहरा प्रभाव पड़ा। विश्व के बारे में उपनिषदों के दृष्टिकोण की भांति जैन दर्शन में भी आकाश और समय असीम माने गये। इससे बहुत बड़ी संख्याओं और अपरिमित संख्ययओं की परिभाषाओं में गहरी रुचि पैदा हुई। पुनरावर्तन सूत्रों (recursive) सूत्रों के जरिये असीम संख्यायें बनाईं गईं। अनुयोगद्वार सूत्र में ऐसा ही किया गया। जैन गणितज्ञों ने पांच प्रकार की असीम संख्यायें बतलाईं :

  1. एक दिशा में असीम, 2. दो दिशाओं में असीम, 3. क्षेत्र में असीम, 4. सर्वत्र असीम और 5. सतत असीम

3री सदी ई. पू. में रचित भगवती सूत्रों में और 2री सदी ई. पू. में रचित साधनांग सूत्र में क्रमचय-संचय (permutation combination) को सूचीबद्ध किया गया है।

जैन समुच्चय सिद्धांत संभवतः जैन ज्ञान मीमांसा के स्यादवाद के समानान्तर ही उद्भूत हुआ जिसमें वास्तविकता को सत्य की दशा-युगलों और अवस्था-परिवर्तन युगलों के रूप में वर्णित किया गया है। अनुयोगद्वार सूत्र घातांक नियम के बारे में एक विचार देता है और इसे लघुगणक की संकल्पना विकसित करने के लिए उपयोग में लाता है। लॉग आधार 2, लाग आधार 3 और लाग आधार 4 के लिए क्रमशः अर्ध आछेद, त्रिक आछेद और चतुराछेद जैसे शब्द प्रयुक्त किए गये हैं। षट्खण्डागम में कई समुच्चयों पर लागरिथमिक फंक्शन्स आधार 2 की क्रिया, उनका वर्ग निकालकर, उनका वर्गमूल निकालकर और सीमित या असीमित घात लगाकर की गई हैं। इन क्रियाओं को बार बार दुहराकर नये समुच्चय बनाये गये हैं। अन्य कृतियों में द्विपद प्रसार (binomial expansion) में आने वाले गुणकों का संयोजनों की संख्या से संबंध दिखाया गया है। चूंकि जैन ज्ञान मीमांसा में वास्तविकता का वर्णन करते समय कुछ अंश तक अनिश्चयता स्वीकार्य है। अतः अनिश्चयात्मक समीकरणों से जूझने में और अपरिमेय संख्याओं का निकटतम संख्यात्मक मान निकालने में वह संभवतया सहायक हुई।

बौद्ध साहित्य भी अनिश्चयात्मक और असीम संख्याओं के प्रति जागरूकता प्रदर्शित करता है। बौद्ध गणित का वर्गीकरण ‘गणना’ याने सरल गणित या ‘सांख्यन’ याने उच्चतर गणित में हुआ। संख्यायें तीन प्रकार की मानी गईं : सांखेय याने गिनने योग्य, असांखेय याने अगण्य और अनन्त याने असीम। अंक शून्य की परिकल्पना प्रस्तुत करने में, शून्य के संबंध में दार्शनिक विचारों ने मदद की होगी। ऐसा लगता है कि स्थानीय मान वाली सांख्यिक प्रणाली में सिफर याने बिन्दु का एक खाली स्थान में लिखने का चलन बहुत पहले से चल रहा होगा, पर शून्य की बीजगणितीय परिभाषा और गणितीय क्रिया से इसका संबंध 7 वीं सदी में ब्रह्मगुप्त के गणितीय ग्रंथों में ही देखने को मिलता है। विद्वानों में इस मसले पर मतभेद है कि शून्य के लिए संकेत चिन्ह भारत में कबसे प्रयुक्त होना शुरू हुआ। इफरा का दृढ़ विश्वास है कि शून्य का प्रयोग आर्यभट्ट के समय में भी प्रचलित था। परंतु गुप्तकाल के अंतिम समय में शून्य का उपयोग बहुतायत से होने लगा था। 7 वीं और 11 वीं सदी के बीच में भारतीय अंक अपने आधुनिक रूप में विकसित हो चुके थे और विभिन्न गणितीय क्रियाओं को दर्शाने वाले संकेतों जैसे धन, ऋण, वर्गमूल आदि के साथ आधुनिक गणितीय संकेत चिन्हों के नींव के पत्थर बन गए।

भारतीय अंक प्रणाली

यद्यपि चीन में भी दशमलव आधारित गणना पद्धति प्रयोग में थी, किन्तु उनकी संकेत प्रणाली भारतीय संकेत चिन्ह प्रणाली जितनी शुद्ध और सरल न थी और यह भारतीय संकेत प्रणाली ही थी जो अरबों के मार्फत पश्चिमी दुनियां में पहुंची और अब वह सार्वभौमिक रूप में स्वीकृत हो चुकी है। इस घटना में कई कारकों ने अपना योगदान दिया जिसका महत्व संभवतः सबसे अच्छे ढंग से फ्रांसीसी गणितज्ञ लाप्लेस ने बताया हैः ’’हर संभव संख्या को दस संकेतों के समुच्चय द्वारा प्रकट करने की अनोखी विधि जिसमें हर संकेत का एक स्थानीय मान और एक परम मान हो, भारत में ही उद्भूत हुई। यह विधि आजकल इतनी सरल लगती है कि इसके गंभीर और प्रभावशाली महत्व पर ध्यान ही नहीं जाता। इसने अपनी सरल विधि द्वारा गणना को अत्याधिक आसान बना दिया और अंकगणित को उपयोगी अविष्कारों की श्रेणी में अग्रगण्य बना दिया।’’

यह अविष्कार प्रतिभाशाली तो था परंतु यह कोई अचानक नहीं हुआ था। पश्चिमी जगत में जटिल रोमन अंकीय प्रणाली एक बड़ी बाधा के रूप में प्रगट हुई और चीन की चित्रलिपि भी एक रुकावट थी। लेकिन भारत में ऐसे विकास के लिए सब कुछ अनुकूल था। दशमलव संख्याओं के प्रयोग का एक लम्बा और स्थापित इतिहास था ही, दार्शनिक और अंतरिक्षीय परिकल्पनाओं ने भी, संख्या सिद्धांत के प्रति एक रचनात्मक विस्तृत दृष्टिकोण को बढ़ावा दिया। पाणिनि के भाषा सिद्धांत और विधि सम्मत भाषा के अध्ययन और संकेतवाद तथा कला और वास्तुशास्त्र में प्रतिनिधित्वात्मक भाव के साथ साथ विवेकवादी सिद्धांत और न्याय सूत्रों की कठिन ज्ञान मीमांसा और स्याद्वाद तथा बौद्ध ज्ञान के नवीनतम भाव ने मिलकर इस अंक सिद्धांत को आगे बढ़ाने में मदद की।

व्यापार और वाणिज्य का प्रभाव, नक्षत्र-विद्या का महत्व

व्यापार और वाणिज्य में वृद्धि के फलस्वरूप, विशषरूप से ऋण लेने देने में, साधारण और चक्रवृद्धि ब्याज के ज्ञान की जरूरत पड़ी। संभवतः इसने अंकगणितीय और ज्यामितीय श्रेढियों में रुचि को उद्दीप्त किया। ब्रह्मगुप्त द्वारा ऋणात्मक संख्याओं को कर्ज के रूप में और धनात्मक संख्याओं को सम्पत्ति के रूप में वर्णित करना, व्यापार और गणित के बीच संबंध की ओर इशारा करता है। गणित, ज्योतिष का ज्ञान, विशेषकर ज्वारभाटे और नक्षत्रों का ज्ञान व्यापारी समुदायों के लिए बड़ा महत्व रखता था क्योंकि उन्हें रात में रेगिस्तानों और महासागरों को पार करना पड़ता था। जातक कथाओं और कई अन्य लोक कथाओं में इनका बार बार जिक्र आना इसी बात का द्योतक है। वाणिज्य के लिए दूर जाने की इच्छा रखने वालों को अनिवार्य रूप से नक्षत्र विद्या में कुछ आधारभूत जानकारी लेनी पड़ती थी। इससे इस विद्या के शिक्षकों की संख्या काफी बढ़ी जिन्होंने बिहार के कुसुमपुर या मध्य भारत के उज्जैन अथवा अपेक्षाकृत छोटे स्थानीय केन्द्रों या गुरूकुलों में प्रशिक्षण प्राप्त किया। विद्वानों में गणित और नक्षत्र विद्या की पुस्तकों का विनिमय भी हुआ और इस ज्ञान का एक क्षेत्र से दूसरे क्षेत्र में प्रसार हुआ। लगभग हर भारतीय राज्य ने महान गणितज्ञों को जन्म दिया जिन्होंने कई सदियों पूर्व भारत के अन्य भाग में उत्पन्न गणितज्ञों की कृतियों की समीक्षा की। विज्ञान के संचार में संस्कृत ही जन माध्यम बनी थी।
बीज रोपण समय और फसलों का चुनाव निश्चित करने के लिए आवश्यक था कि जलवायु और वृष्टि की रूपरेखा की जानकारी बेहतर हो। इन आवश्यकताओं और शुद्ध पंचांग की आवश्यकता ने ज्योतिष विज्ञान के घोड़े को ऐड़ लगा दी। इसी समय धर्म और फलित ज्योतिष ने भी ज्योतिष विज्ञान में रुचि पैदा करने में योगदान दिया और इस अविवेकी प्रभाव का एक नकारात्मक नतीजा था, अपने समय से बहुत आगे चलने वाले वैज्ञानिक सिद्धांतों की अस्वीकृति। गुप्तकाल के एक बड़े विज्ञानवेत्ता, आर्यभट ने जो 476 ई. में बिहार के कुसुमपुर में जन्मे थे, अंतरिक्ष में ग्रहों की स्थिति के बारे में एक सुव्यवस्थित व्याख्या दी थी। पृथ्वी के अपने अक्ष पर घूर्णन के बारे में उनकी परिकल्पना सही थी तथा ग्रहों की कक्षा दीर्घवृताकार है उनका यह निष्कर्ष भी सही था। उन्होंने यह भी उचित ढंग से सिद्ध किया था कि चंद्रमा और अन्य ग्रह सूर्य प्रकाश के परावर्तन से प्रकाशित होते थे। उन्होंने सूर्य ग्रहण और चंद्र ग्रहण से संबंधित सभी अंधविश्वासों और पौराणिक मान्यताओं को नकारते हुए इन घटनाओं की उचित व्याख्या की थी। यद्यपि भास्कर प्रथम, जन्म 6वीं सदी, सौराष्ट्र् में, और अश्मक विज्ञान विद्यालय, निजामाबाद, आंध्र के विद्यार्थी, ने उनकी प्रतिभा को और उनके वैज्ञानिक योगदान के असीम महत्व को पहचाना। उनके बाद आने वाले कुछ ज्योतिषियांे ने पृथ्वी को अचल मानते हुए, ग्रहणों के बारे में उनकी बौद्धिक व्याख्याओं को नकार दिया। लेकिन इन विपरीतताओं के होते हुए भी आर्यभट का गंभीर प्रभाव परवर्ती ज्योतिर्विदों और गणितज्ञों पर बना रहा जो उनके अनुयायी थे, विशेषकर अश्मक विद्यालय के विद्वानों पर।

सौरमंडल के संबंध में आर्यभट का क्रांतिकारी ज्ञान विकसित होने में गणित का योगदान जीवंत था। पाइ का मान, पृथ्वी का घेरा /62832 मील/ और सौर वर्ष की लम्बाई, आधुनिक गणना से 12 मिनट से कम अंतर और उनके द्वारा की गईं कुछ गणनायें थीं जो शुद्ध मान के काफी निकट थीं। इन गणनाओं के समय आर्यभट को कुछ ऐसे गणितीय प्रश्न हल करने पड़े जिन्हें बीजगणित और त्रिकोणमिति में भी पहले कभी नहीं किया गया था।

आर्यभट्ट के अधूरे कार्य को भास्कर प्रथम ने सम्हाला और ग्रहों के देशांतर, ग्रहों के परस्पर तथा प्रकाशमान नक्षत्रों से संबंध, ग्रहों का उदय और अस्त होना तथा चंद्रकला जैसे विषयों की विशद विवेचना की। इन अध्ययनों के लिए और अधिक विकसित गणित की आवश्यकता थी। अतः भास्कर ने आर्यभट द्वारा प्रणीत त्रिकोणमितीय समीकरणों को विस्तृत किया तथा आर्यभट की तरह इस सही निष्कर्ष पर पहुंचे कि पाइ एक अपरिमेय संख्या है। उसका सर्वाधिक महत्वपूर्ण योगदान है – ज्या फलन की गणना जो 11 प्रतिशत तक शुद्ध है। उन्होंने इंडिटर्मिनेट समीकरणों पर भी मौलिक कार्य किया जो उसके पहले किसी ने नहीं किया और सर्वप्रथम ऐसे चतुर्भुजों की विवेचना की जिनकी चारों भुजायें असमान थीं और उनमें आमने सामने की भुजायें समानान्तर नहीं थीं।

ऐसा ही एक दूसरा महत्वपूर्ण ज्योतिर्विद गणितज्ञ वाराहमिहिर उज्जैन में 6 वीं सदी में हुआ था जिसने गणित ज्योतिष पर पूर्व लिखित पुस्तकों को एक साथ लिपिबद्ध किया और आर्यभट्ट के त्रिकोणमितीय सूत्रों का भंडार बढ़ाया। क्रमपरिवर्तन और संयोजन पर उसकी कृतियों ने जैन गणितज्ञों की इस विषय पर उपलब्धियों को परिपूर्ण किया और दबत मान निकालने की एक विधि दी जो अत्याधुनिक ’’पास्कल के त्रिभुज’’ के बहुत सदृश है। 7 वीं सदी में ब्रह्मगुप्त ने बीजगणित के मूल सिद्धांतों को सूचीबद्ध करने का महत्वपूर्ण काम किया। शून्य के बीजगणितीय गुणों की सूची बनाने के साथ साथ उसने ऋणात्मक संख्याओं के बीजगणितीय गुणों की भी सूची बनाई। क्वाड्रैटिक इनडिटरमिनेट समीकरणों का हल निकालने संबंधी उसके कार्य आयलर और लैग्रेंज के कार्यों का पूर्वाभास प्रदान करते हैं।

       

Recommended Articles

Leave A Comment